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Size distribution of creep cracks in materials showing a mixed mode

fracture simulated by one-dimensional crack growth model
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The size distribution of creep cracks has been simulated
by a logarithmic normal distribution [1, 2] or a normal
distribution [3]. Evans [4] summarized the experimen-
tal data and concluded that the crack size distribution
can be approximated quite well by a logarithmic nor-
mal distribution. In the previous study [5], the growth
and linkage of grain-boundary cracks was simulated
by a two-dimensional multicrack growth model simi-
lar to the random walk model proposed by Nishiuma
et al. [6, 7]. In the simulation, the crack size distribu-
tion could be approximated by a logarithmic normal
distribution, and the number of the cracks (N) of the
size (x ′) equal to or larger than a given size (X) (the
ranking of the crack size) could be approximated by a
power law relationship (N (x ′ ≥ X ) ∝ X−a, a: scaling
exponent) at the larger crack sizes [5]. The results of
the simulation could explain the crack size distribution
characteristics on the crept specimens of the austenitic
21Cr-4Ni-9Mn steel, in which creep fracture of spec-
imens is governed by grain-boundary fracture [8, 9].
However, a mixed mode of grain-boundary fracture and
transgranular fracture is often observed on the ruptured
specimens of materials such as the austenitic SUS304
steel [10]. The difference in the fracture mechanisms
may be correlated with the difference in the growth and
linkage of cracks and may affect the size distribution
of creep cracks in materials. In this study, the simula-
tion of growth and linkage of cracks was made using
one-dimensional crack growth model that is similar to
the (two-dimensional) multicrack growth model in the
previous study [5].

The principal rules in the simulation using the present
model are as follows:

1. A crack may grow in the horizontal direction from
the initial defects randomly distributed on the nodal
points of the square lattice (a crack has two growth
points).

2. A growth point of a crack may reach an adjacent
crack (crack linkage) or an edge of the square lattice
(edge relaxation).

3. Some cracks may stop to grow on the square lattice
(crack arrest) and may not link up with other cracks,
even if they are very close to other cracks.

One segment (one step) length in the lattice corresponds
to the increment of the crack length in a single step of
the simulation. The crack size (cluster size) was de-
fined by the number of segments forming a cluster on

the square lattice. The system size of the square lat-
tice used in the simulation was 50 × 50 and the total
number of nodal points on the lattice was 512 = 2601
in this study. Percolation in the lattice corresponds to
fracture of materials. Computer simulation was made
five times each for 100 initial defects (the initial defect
density, IDD, is 0.0384) and for 200 initial defects (IDD
is 0.0769) to percolation. The number of the initial de-
fects (or IDD) was determined according to the obser-
vation of creep cracks on the ruptured specimens of the
SUS304 steel [10]. The probability that a growth point
of a cluster does not link up with a growth point of other
clusters is 0.250 in the one-dimensional crack growth
model, while the probability is about 0.167 in the (two-
dimensional) multicrack growth model. The cluster size
does not exceed the length of 50 steps (the length of
a percolation cluster) in the present one-dimensional
crack growth model. Further, percolation occurs only
in the horizontal direction in the present model. A clus-
ter formed in the simulation is hereafter referred to as
“crack”.

Fig. 1a shows a result of simulation using one-
dimensional crack growth model (100 initial defects
and the initial defect density, IDD, is 0.0384 in this
case). Solid circles show 100 initial defects in the lat-
tice. A bold line in the figure indicates a percolation
crack (percolation cluster). Many cracks are formed on
the lattice. Fig. 1b shows the crack size distribution in
the simulation result of Fig. 1a. The number of steps
in the figure may correspond to the creep deformation
after crack initiation, which drives the growth and link-
age of creep cracks. The crack size distribution seems to
be approximated by a logarithmic normal distribution
except early stage of simulation. Similar results were
obtained on other four simulations for IDD = 0.0384
and on five simulations for IDD = 0.0769. These results
of simulation are also similar to those obtained on the
(two-dimensional) multicrack growth model [5]. Fig. 2
shows the cumulative number of cracks in the simula-
tion using the one- dimensional crack growth model.
Almost linear relationship is observed between the cu-
mulative number of cracks, N, and the crack size, x, in
the semi-logarithmic scale for both IDD = 0.0384 and
IDD = 0.0769 at each step of the simulation. This indi-
cates that the cumulative number of cracks (N) can be
approximated by an exponential law relationship with
a parameter c for all crack sizes (x), namely, N = B0
exp(−cx), where B0 is a constant. The value of c pa-
rameter decreases with increasing relative number of
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Figure 1 A result of simulation using one-dimensional crack growth model (100 initial defects and the initial defect density, IDD, is 0.0384 in this
case).
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Figure 2 Cumulative number of cracks in the simulation using one-
dimensional crack growth model: (a) 100 initial defects (IDD = 0.0384)
and (b) 200 initial defects (IDD = 0.0769).

steps in the simulation. The value of c is a little larger
in the simulation for IDD = 0.0384 at the same rela-
tive number of steps. Fig. 3 shows the cumulative size
distribution of cracks in five simulations for IDD =
0.0384 (100 initial defects) at the stage of percolation
(fracture of materials). Each set of the datum points
can be better approximated by an exponential law rela-
tionship rather than a power law relationship, although
there are some differences in the number of steps to
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Figure 3 Cumulative size distribution of cracks in five simulations for
100 initial defects (IDD = 0.0384) at the stage of percolation.

percolation (NSP) and in the values of c parameter
between five simulations. These results are different
from those obtained in the simulation using the two-
dimensional multicrack growth model [5], in which
the cluster size distribution could be approximated by
a logarithmic normal distribution but the cumulative
number of the clusters (N) could be fitted to a power
law relationship (N (x ′ ≥ X ) ∝ X−a) at the larger crack
sizes. Thus, different cumulative size distribution of
cracks observed in the present simulation may be at-
tributed to more restricted growth and linkage of cracks
in the one-dimensional crack growth model com-
pared with the (two-dimensional) multicrack growth
model.

Steel bars of 16 mm diameter and 90 mm length of the
austenitic SUS304 steel (Fe-0.06 wt%C-16.80 wt%Cr-
10.20 wt%Ni-2.11 wt%Mo) were water-quenched after
solution heating for 14.4 ks at 1473 K and then aged
for 360 ks at 1023 K [10]. The heat-treated bars (the
average grain diameter was 200 µm) were machined
into creep-rupture specimens of 5 mm diameter and 30
mm gauge length. The creep experiments were carried
out at 973 K. The size distribution of creep cracks ini-
tiated in a given area (5 mm × 2 mm) on the specimen
surface were examined on the crept specimens. The
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Figure 4 Crack size distribution in the aged specimens of the SUS304
steel crept at 973 K: (a) 118 MPa and (b) 98 MPa.

creep strain to crack initiation was in the range from
0.0375 to 0.0400, and decreased slightly with increas-
ing creep stress [10]. Fig. 4 shows the crack size dis-
tribution in the specimens of the SUS304 steel crept
at 973 K. The size distribution of creep cracks can
be approximated by a logarithmic normal distribution
for both stresses of 98 and 118 MPa. The number of
cracks is larger in the specimen crept under the lower
stress (98 MPa), suggesting that the initial defect den-
sity (IDD) is larger in this specimen. Fig. 5 shows the
cumulative number of cracks in the aged specimens
of the SUS304 steel crept at 973 K. The cumulative
number of cracks (N) seems to be approximated by
an exponential law function of the crack length (x) in
the SUS304 steel under both stresses (Fig. 5a and b).
The slope of straight line gives the c parameter of the
exponential law relationship (N = B0 exp(−cx)). The
value of c decreases with increasing creep strain, al-
though the value of c parameter in the experiments is
much larger than that in the simulation (Fig. 2). The
value of c is a little larger in the specimen crept under
the lower stress at the same fraction of creep strain af-
ter crack initiation. These results were different from
those obtained on the 21Cr-4Ni-9Mn steel [5] and the
HS-21 alloy [11], in which the cumulative number of
cracks could be approximated by a power law rela-
tionship at the larger crack sizes. Difference in the cu-
mulative crack size distribution should be attributed to
the difference in the fracture mechanism between these
materials.

Figure 5 Cumulative number of cracks in the specimens of the SUS304
steel crept at 973 K: (a) 118 MPa and (b) 98 MPa.

Creep cracks may extend not only on grain bound-
aries but also in the grains in the specimens of the
SUS304 steel, especially when the crack length exceeds
about one grain-boundary length (about 1.2 × 10−4 m),
whereas these cracks are nucleated on grain bound-
aries [10]. A mixed mode of grain-boundary fracture
and transgranular fracture was observed in the SUS304
steel [10], although grain-boundary fracture occurred
in the 21Cr-4Ni-9Mn steel [8, 9] and the HS-21 alloy
[11]. Occurrence of transgranular fracture may lead to a
decrease in the crack growth rate, namely, an increased
difficulty of the growth and linkage of cracks [10]. A
mixed mode fracture may result in a different type of
cumulative size distribution of cracks approximated by
an exponential law relationship. Both the size distri-
bution and the cumulative size distribution of cracks
in the crept specimens of the SUS304 steel can be re-
produced also in the simulation using one-dimensional
crack growth model in this study.
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